Propagation of Light Through Atmospheric Turbulence

Lecture 5, ASTR 289

Claire Max
UC Santa Cruz
January 23, 2020

Outline of today's lecture

1. Review: Use phase structure function $D_{\phi} \sim r^{2 / 3}$ to calculate statistical properties of light propagation thru index of refraction variations
2. Use these statistics to derive the atmospheric coherence length, r_{0}
3. Use r_{0} to calculate key quantities for $A O$ performance

Review: Kolmogorov Turbulence

- 1-D power spectrum of velocity fluctuations: $\mathrm{k}=2 \pi / \lambda$

$$
\Phi(\mathrm{k}) \sim \mathrm{k}^{-5 / 3} \text { (one dimension) }
$$

- 3-D power spectrum: $\Phi^{3 D}(\mathrm{k}) \sim \Phi / k^{2}$

$$
\Phi^{3 D}(k) \sim k^{-11 / 3} \text { (3 dimensions) }
$$

- Valid for fully developed turbulence, over the "inertial range" between the outer scale L_{0} and the inner scale I_{0}

What does a Kolmogorov distribution of phase look like?

- A Kolmogorov "phase screen" courtesy of Don Gavel
- Shading (black to white) represents phase differences of ~1.5 $\mu \mathrm{m}$
- $r_{0}=0.4$ meter

Structure function for atmospheric fluctuations, Kolmogorov turbulence

- Structure functions for temperature and index of refraction

$$
\begin{aligned}
& D_{T}(r)=\left\langle[T(x)-T(x+r)]^{2}\right\rangle=C_{T}^{2} r^{2 / 3} \\
& D_{N}(r)=\left\langle[N(x)-N(x+r)]^{2}\right\rangle=C_{N}^{2} r^{2 / 3}
\end{aligned}
$$

- For atmospheric turbulence, $C_{N}{ }^{2}$ and $C_{T}{ }^{2}$ are functions of altitude z: $C_{N}{ }^{2}(z)$ and $C_{T}{ }^{2}(z)$

Spatial Coherence Function

- Spatial coherence function of a field is defined as

$$
B_{h}(\vec{r}) \equiv\left\langle\Psi(\vec{x}) \Psi^{*}(\vec{x}+\vec{r})\right\rangle \quad \text { Covariance for complex fn's }
$$

» $B_{h}(\vec{r})$ is a measure of how "related" the field Ψ is at one position (e.g. x) to its values at neighboring positions ($x+r$).

$$
\begin{aligned}
& \text { Since } \Psi(\vec{x})=\exp [i \phi(\vec{x})] \text { and } \Psi^{*}(\vec{x})=\exp [-i \phi(\vec{x})], \\
& B_{h}(\vec{r})=\langle\exp i[\phi(\vec{x})-\phi(\vec{x}+\vec{r})]\rangle
\end{aligned}
$$

Result of long computation of the spatial coherence function $B_{h}(r)$

$$
B_{h}(\vec{r})=\exp \left[-D_{\phi}(\vec{r}) / 2\right]=\exp \left[-\frac{1}{2}\left(2.914 k^{2} r^{5 / 3} \int_{0}^{\infty} d h C_{N}^{2}(h)\right)\right]
$$

For a slant path insert multiplicative factor $(\sec \theta)^{5 / 3}$ to account for dependence on zenith angle θ

Digression to define optical transfer function (OTF)

- Imaging in the presence of imperfect optics (or aberrations in atmosphere): in intensity units

$$
\begin{aligned}
& \text { Image }=\text { Object } \otimes \begin{array}{l}
\text { Point Spread Function } \\
\text { convolved with }
\end{array} \\
& \qquad I=O \otimes P S F \equiv \int d \vec{x} O(\vec{x}-\vec{r}) \operatorname{PSF}(\vec{x})
\end{aligned}
$$

- Take Fourier Transform: $\tilde{F}(I)=\tilde{F}(O) \tilde{F}(P S F)$
- Optical Transfer Function = Fourier Transform of PSF

$$
\tilde{F}(I)=\mathrm{OTF} \times \tilde{F}(O)
$$

Examples of PSF's and their Optical Transfer Functions

Derive the atmospheric coherence length, r_{0}

- Define r_{0} as the telescope diameter where optical transfer functions of telescope and atmosphere are equal:

$$
\mathrm{OTF}_{\text {telescope }}=\mathrm{OTF} \mathrm{a}_{\text {atmosphere }}
$$

- We will then be able to use r_{0} to derive relevant timescales of turbulence, and to derive "Isoplanatic Angle":
- Describes how AO performance degrades as astronomical targets get farther from guide star

First need optical transfer function of the telescope in the presence of turbulence

- OTF for the whole imaging system (telescope plus atmosphere)

$$
S(f)=B(f) T(f)
$$

Here $B(f)$ is the optical transfer fn . of the atmosphere and $T(f)$ is the optical transfer fn . of the telescope (units of f are cycles per meter).
f is often normalized to cycles per diffraction-limit angle (λ / D).

- Measure resolving power \mathfrak{R} of the imaging system by

$$
\Re=\int d f S(f)=\int d f B(f) T(f)
$$

Derivation of r_{0}

- \mathfrak{R} of a perfect telescope with a purely circular aperture of (small) diameter d is

$$
\mathfrak{R}=\int d f T(f)=\frac{\pi}{4}\left(\frac{d}{\lambda}\right)^{2}
$$

(uses solution for diffraction from a circular aperture)

- Define a circular aperture $d=r_{0}$ such that the \mathfrak{R} of the telescope (without any turbulence) is equal to the \Re of the atmosphere alone:

$$
\int d f B(f)=\int d f T(f) \equiv \frac{\pi}{4}\left(\frac{r_{0}}{\lambda}\right)^{2}
$$

Derivation of r_{0}, continued

- Now we have to evaluate the contribution of the atmosphere's OTF: $\int d f B(f)$
- $B(f)=B_{h}(\lambda f)$ (to go from units of cycles per meter to cycles per wavelength) - see slide 8

$$
\begin{aligned}
& B_{h}(\vec{r})=\exp \left[-\frac{1}{2}\left(2.914 k^{2} r^{5 / 3} \int_{0}^{\infty} d h C_{N}^{2}(h)\right)\right] \\
& \text { Also, } B(f)=B_{h}(\lambda f)=\exp \left(-K f^{5 / 3}\right)
\end{aligned}
$$

(Kolmogorov)

Derivation of r_{0}, continued

- Now we need to do the integral in order to solve for r_{0} :

$$
\frac{\pi}{4}\left(\frac{r_{0}}{\lambda}\right)^{2}=\int d f B(f)=\int d f \exp \left(-K f^{5 / 3}\right)=\frac{6 \pi}{5} \Gamma\left(\frac{6}{5}\right) K^{-6 / 5}
$$

- Solve for $K: \quad K=3.44\left(\frac{r_{0}}{\lambda}\right)^{-5 / 3}$

OTF of atmosphere

Replace λf by r

Derivation of r_{0}, concluded

$$
3.44\left(\frac{r}{r_{0}}\right)^{5 / 3}=\frac{1}{2}\left[2.914 k^{2} r^{5 / 3} \sec \varsigma \int d h C_{N}^{2}(h)\right]
$$

$$
r_{0}=\left[0.423 k^{2} \sec \varsigma \int d h C_{N}^{2}(h)\right]^{-3 / 5}
$$

Hooray!

Scaling of r_{0}

- We will show that r_{0} sets scale of all AO correction

$$
r_{0}=\left[0.423 k^{2} \sec \varsigma \int_{0}^{H} C_{N}^{2}(z) d z\right]^{-3 / 5} \propto \lambda^{6 / 5}(\sec \varsigma)^{-3 / 5}\left[\int C_{N}^{2}(z) d z\right]^{-3 / 5}
$$

- r_{0} gets smaller when turbulence is strong ($C_{N}{ }^{2}$ large)
- r_{0} gets bigger at longer wavelengths: AO is easier in the IR than with visible light
- r_{0} gets smaller quickly as telescope looks toward the horizon (larger zenith angles ζ)

Typical values of r_{0}

- Usually r_{0} is given at a 0.5 micron wavelength for reference purposes.
- It's up to you to scale it by $\lambda^{6 / 5}$ to evaluate r_{0} at your favorite wavelength.
- At excellent sites such as Mauna Kea in Hawaii, r_{0} at $\lambda=0.5$ micron is $10-30 \mathrm{~cm}$.
- But there is a big range from night to night, and at times also within a night.

Several equivalent meanings for r_{0}

- Define r_{0} as telescope diameter where optical transfer functions of the telescope and atmosphere are equal (the calculation we just did)
- r_{0} is separation on the telescope primary mirror where phase correlation has fallen by 1/e
- $\left(D / r_{0}\right)^{2}$ is approximate number of speckles in shortexposure image of a point source
- D / r_{0} sets the required number of degrees of freedom of an AO system
- Can you think of others?

Seeing statistics at Lick Observatory (Don Gavel and Elinor Gates)

- Left: Typical shape for histogram has peak toward lower values of r_{0} with long tail toward large values of r_{0}
- Huge variability of r_{0} within a given night, week, or month
- Need to design AO systems to deal with a significant range in r_{0} Page 19

Effects of turbulence depend on size of telescope, through D / r_{0}

- For telescope diameter $D>(2-3) \times r_{0}$:

Dominant effect is "image wander"

- As D becomes >> r_{0} :

Many small "speckles" develop

- Computer simulations by Nick Kaiser: image of a star, $r_{0}=40 \mathrm{~cm}$

$\mathrm{D}=1 \mathrm{~m}$
D $=2 \mathrm{~m}$
$\mathrm{D}=8 \mathrm{~m}$
Page 20

- Need to have DM actuator spacing $\sim r_{0}$ in order to fit the wavefront well
- Number of "subapertures" or actuators needed is proportional to area $\sim\left(D / r_{0}\right)^{2}$

Implications of r_{0} for $A O$ system design: 2) Wavefront sensor and guide star flux

- Diameter of lenslet $\leq r_{0}$
- Need wavefront measurement at least for every subaperture on deformable mirror
- Smaller lenslets need brighter guide stars to reach same signal to noise ratio for wavefront measurement

Implications of r_{0} for $A O$ system design:

 3) Speed of AO system
blob of turbulence $\longrightarrow V_{\text {wind }}$

Telescope

Subapertures

- Timescale over which turbulence within a subaperture changes is

$$
\tau \sim \frac{\text { subaperture diameter }}{V_{\text {wind }}} \sim \frac{r_{0}}{V_{\text {wind }}}
$$

- Smaller r_{0} (worse turbulence) \Rightarrow need faster AO system
- Shorter WFS integration time \Rightarrow need brighter guide star

Summary of sensitivity to r_{0}

- For smaller r_{0} (worse turbulence) need:
- Smaller sub-apertures
» More actuators on deformable mirror
» More lenslets on wavefront sensor
- Faster AO system
» Faster computer, lower-noise wavefront sensor detector because each frame you read brings noise
- Much brighter guide star (natural star or laser)

Interesting implications of r_{0} scaling for telescope scheduling

- If AO system must work under (almost) all atmospheric conditions, will be quite expensive
- Difficulty and expense scale as a high power of r_{0}
- Need more and more actuators for smaller values of r_{0}
- Two approaches:
- Spend the extra money on AO in order to be able to use almost all the observing time allocated to AO
- Use flexible schedule algorithm that only turns AO system "on" when r_{0} is larger than a particular value (turbulence is weaker than a particular value)

Next: All sorts of good things that come from knowing r_{0}

- Timescales of turbulence
- Isoplanatic angle: AO performance degrades as astronomical targets get farther from guide star

A simplifying hypothesis about time behavior

- Almost all work in this field uses "Taylor's Frozen Flow Hypothesis"
- Entire spatial pattern of a random turbulent field is transported along with the wind
- Turbulent eddies do not change significantly as they are carried across the telescope by the wind
- True if typical velocities within the turbulence are small compared with the overall fluid (wind) velocity
- Allows you to infer time behavior from measured spatial behavior and wind speed: $\partial \vec{u}$

$$
\frac{\partial u}{\partial t}=-\vec{u} \cdot \nabla \vec{u}
$$

Cartoon of Taylor Frozen Flow

- From Tokovinin tutorial at CTIO:
- http://www.ctio.noao.e du/~atokovin/tutorial/

What is typical timescale for

 flow across distance r_{0} ?

- Time for wind to carry frozen turbulence over a subaperture of size r_{0} (Taylor's frozen flow hypothesis):

$$
\tau_{0} \sim r_{0} / V
$$

- Typical values at a good site, for $\mathrm{V}=20 \mathrm{~m} / \mathrm{sec}$:

Wavelength $(\mu \mathrm{m})$	r_{0}	$\tau_{0}=r_{0} / V$	$f_{0}=1 / \tau_{0}=V / r_{0}$
0.5	10 cm	5 msec	200 Hz
2	53 cm	27 msec	37 Hz
10	3.6 meters	180 msec	5.6 Hz

But what wind speed should we use?

- If there are layers of turbulence, each layer can move with a different wind speed in a different direction!
- And each layer has different $C_{N}{ }^{2}$

$\mathrm{V}_{4} \longleftarrow \sim$

Concept Question: What would be a plausible way to weight the velocities in the different layers?

Rigorous expressions for τ_{0} take into

 account different layers

- $f_{G} \equiv$ Greenwood frequency $\equiv 1 / \tau_{0}$

$$
\begin{aligned}
& \tau_{0} \sim 0.3\left(\frac{r_{0}}{\bar{V}}\right) \text { where } \bar{V} \equiv\left[\frac{\int d z C_{N}^{2}\left(z|V(z)|^{5 / 3}\right)}{\int d z C_{N}^{2}(z)}\right]^{3 / 5} \\
& \tau_{0}=f_{G}^{-1}=\left[0.102 k^{2} \sec \zeta \int_{0}^{\infty} d z C_{N}^{2}(z)|V(z)|^{5 / 3}\right]^{-3 / 5} \propto \lambda^{6 / 5}
\end{aligned}
$$

What counts most are high velocities V where $C_{N}{ }^{2}$ is big

Isoplanatic Angle: angle over which turbulence is still well correlated

Anisoplanatism:
 Nice example from first Palomar AO system

- Composite J, H, K band image, 30 second exposure in each band
- J band $\lambda=1.2 \mu \mathrm{~m}, \mathrm{H}$ band $\lambda=1.6 \mu \mathrm{~m}, \mathrm{~K}$ band $\lambda=2.2 \mu \mathrm{~m}$
- Field of view is $40 " \times 40 "$ (at 0.04 arc sec $/$ pixel)

What determines how close the reference star has to be?

Turbulence has to be similar on path to reference star and to science object

Common path has to be large

Anisoplanatism sets a limit to distance of reference star from the science object

Expression for isoplanatic angle θ_{0}

Definition of isoplanatic angle θ_{0}

$$
\frac{\operatorname{Strehl}\left(\theta=\theta_{0}\right)}{\operatorname{Strehl}(\theta=0)}=\frac{1}{e} \cong 0.37
$$

$\vartheta_{0}=\left[2.914 k^{2}(\sec \zeta)^{8 / 3} \int_{0}^{\infty} d z C_{N}^{2}(z) z^{5 / 3}\right]^{-3 / 5}$

- θ_{0} is weighted by high-altitude turbulence $\left(z^{5 / 3}\right)$
- If turbulence is only at low altitude, overlap of the two beams is very high.
- If there is strong turbulence at high altitude, not much turbulence is in common path

Telescope Page 35

More about anisoplanatism:

AO image of sun in visible light

11 second exposure

Fair Seeing
Poor high altitude conditions

From T.

Rimmele

AO image of sun in visible light:

11 second exposure

Good seeing
Good high altitude conditions

From T. Rimmele

Isoplanatic angle, continued

- Isoplanatic angle θ_{0} is weighted by $\left[z^{5 / 3} C_{N}{ }^{2}(z)\right]^{3 / 5}$
- Simpler way to remember θ_{0}
$\theta_{0}=0.314(\cos \zeta)\left(\frac{r_{0}}{\bar{h}}\right)$ where $\bar{h} \equiv\left(\frac{\int d z z^{5 / 3} \mathcal{C}_{N}^{2}(z)}{\int d z C_{N}^{2}(z)}\right)^{3 / 5}$

Review of atmospheric parameters that are key to AO performance

- r_{0} ("Fried parameter")
- Sets number of degrees of freedom of AO system $N \propto\left(\frac{D}{r_{0}}\right)^{2}$
- τ_{0} (or Greenwood Frequency ~ $1 / \tau_{0}$)
$\boldsymbol{\tau}_{\boldsymbol{0}} \sim r_{0} / V \quad$ where $V \equiv\left[\frac{\int d z C_{N}^{2}(z)|V(z)|^{5 / 3}}{\int d z C_{N}^{2}(z)}\right]^{3 / 5}$
- Sets timescale needed for AO correction, is proportional to r_{0}
- θ_{0} (isoplanatic angle)

$$
\theta_{0} \cong 0.3\left(\frac{r_{0}}{\bar{h}}\right) \quad \text { where } \bar{h}=\left(\frac{\int d z C_{N}^{2}(z) z^{5 / 3}}{\int d z C_{N}^{2}(z)}\right)^{3 / 5}
$$

- Angle for which AO correction applies

